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Abstract: We present a compressed sensing (CS) algorithm and sampling strategy for recon-
structing 3-D Optical Coherence Tomography (OCT) image volumes from as little as 10% of the
original data. Reconstruction using the proposed method, Denoising Predictive Coding (DN-PC),
is demonstrated for five clinically relevant tissue types including human heart, retina, uterus,
breast, and bovine ligament. DN-PC reconstructs the difference between adjacent b-scans in a
volume and iteratively applies Gaussian filtering to improve image sparsity. An a-line sampling
strategy was developed that can be easily implemented in existing Spectral-Domain OCT systems
and reduce scan time by up to 90%.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

OCT is capable of acquiring three-dimensional images at micron resolution over a large field of
view. A typical OCT image volume can contain over 100 million pixels of information. The
data requirements of OCT imaging experiments requiring time-lapse imaging (both 2-D and
3-D in time) [1–3], mosaic imaging [4,5], or real-time acquisition [6] can meet or exceed the
data through-put capabilities of image acquisition hardware. These restrictions may prohibit
data-intensive experiments or necessitate specialized solutions for handling and storing terabytes
of data. Long acquisition times can affect image quality through motion artifacts, particularly for
in-vivo imaging [7].

Compressed Sensing (CS) is a technique in sparse representation theory for reconstructing
highly undersampled images at full-resolution under the assumption that the signal is sparse in
some basis [8]. For a known sampling pattern, the problem can be modeled as a linear relationship
y = Ax where y is the observed, undersampled signal and x is the sparse, fully sampled signal.
The sensing matrix A provides a mapping between x and y. Typically, A represents a random
sampling pattern, however, this matrix can also represent more structured sampling patterns that
can be emulated by imaging hardware [9]. The linear CS equation is under-determined, but
the signal x can be exactly recovered using convex optimization [10]. This simple optimization
problem can then be modified and applied to a diverse set of applications by taking advantage of
structure in x [11,12].

CS has revolutionized imaging fields like MRI by decreasing image acquisition time and data
storage needs by up to 90% [13–15]. Many CS approaches for OCT have been proposed that
aim to reconstruct the raw interferogram or other hardware-specific signals [16–22]. Studies
combining CS-OCT with alternate imaging methods like full-depth OCT have also been explored
[23–25]. This manuscript focuses on methods for reconstructing Spectral-Domain OCT (SD-
OCT) volumes as a post-processing approach. Lebed, et al. first demonstrated CS reconstruction
of OCT volumes by modifying the scanning pattern to randomly omit full b-scans and a-lines
[26]. Xu, et al. have published several studies investigating 3-D CS-OCT by undersampling and
reconstructing both the raw interferogram and the image volume in a multi-step reconstruction
process [27–29]. Learning-based approaches have been proposed for situations where the sample
type is known a-priori using an "energy-guided" approach [30] and Dictionary Learning [31].
These are the first CS-OCT studies to leverage image structure to improve reconstruction accuracy.
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Predictive Coding (PC) is a general approach for data compression that leverages structure
by representing a signal in terms of the change between successive data points [32]. The
underlying assumption of PC is that changes between data points are small and infrequent
which makes the difference representation more efficient. Predictive models in CS that assume
spatio-temporal structure have been applied to natural images [33], hyperspectral imaging [34],
and MRI [15,35,36]. To our knowledge, PC approaches have not previously been applied to
CS-OCT.

This study proposes a novel approach to 3-D CS-OCT using a Denoising Predictive Coding
(DN-PC) approach that takes advantage of the inherent spatial structure in OCT volumes.
We show that by reconstructing the difference between adjacent b-scans in a volume, higher
reconstruction accuracy is achieved over traditional methods. Using DN-PC, we provide the
first demonstration of CS-OCT reconstruction for a diverse collection of biological samples
with complex tissue structure including retina, cardiac tissue, uterine tissue, breast tissue, and
ligament. We describe our novel imaging method for rapid acquisition and reconstruction of
OCT volumes and demonstrate its success on artificially sub-sampled volumes. Additionally, the
role of speckle noise in reconstruction performance is explored. Reconstruction performance is
compared with popular CS algorithms through qualitative and quantitative assessment.

2. Methods

ℓ1 CS signal recovery is first introduced as the traditional approach, then expanded to predictive
coding and the novel approach DN-PC. We begin by defining vectorized images x ∈ RN and
y ∈ RM as the full-resolution and undersampled images, respectively. The signal x can be
recovered from y by solving the objective function

argmin
x

∥y − Ax∥2
2 + ∥Ψx∥1 (1)

where Ψ is the sparse representation basis (e.g. DFT) and A is an M × N matrix which encodes
the undersampling pattern. Multiple methods exist for solving an objective function of this form
such as Iterative Soft Thresholding (IST) [37] or Alternating Directions Method of Multipliers
(ADMM) [38].

Suppose xt and xt−1 represent adjacent images in a volumetric scan and the difference image is
∇x = xt − xt−1. Using the framework proposed in [39], Eq. (1) can be modified to solve for ∇x as
follows.

argmin
∇x

∥yt − (Axt−1 + A∇xt)∥
2
2 + ∥Ψ∇xt∥1

argmin
∇x

∥(yt − Axt−1) − A∇xt∥
2
2 + ∥Ψ∇xt∥1

argmin
∇x

∥∇yt − A∇xt∥
2
2 + ∥Ψ∇xt∥1 (2)

This objective function has the same form as Eq. (1) so it can be solved using an identical
solver. Speckle noise is inevitable source of corruption in OCT images, degrading image quality
and potentially hindering accurate CS reconstruction. Consequently, incorporating denoising
into the objective function may improve reconstruction performance. Suppose rather than using
ℓ1 regularization on the difference image ∇x, it was applied to the denoised version through
function D(x, λ) where λ is a denoising parameter. In this case the objective function becomes
the following function.

argmin
∇x

∥∇yt − A∇xt∥
2
2 + ∥ΨD(∇xt, λ)∥1 (3)

∇xt is in the ℓ2 term but D(∇xt) in the ℓ1 term so it will not be possible to solve using the
same approach as in Eq. (2). Instead, the method proposed by Wen, et al. for denoising image
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restoration [40] can be used to solve Eq. (3) by decoupling the objective function into two
subproblems which are solved in an alternating fashion. The subproblems of Eq. (3) as defined
as follows.

∇x̂i = argmin
∇x

∥∇y − A∇x∥2
2 + α∥∇x − ∇xi−1∥1 (4)

∇xi = argmin
∇x

∥D(∇x, λ) − ∇x̂i∥
2
2 + β∥ΨD(∇x, λ)∥1 (5)

The iteration begins with an initial guess ∇xi−1 and is penalized to agree with the observation
y. The second equation controls the sparsity of the solution via the ℓ1 norm. Noting that the OCT
image is sparse when denoised and transformed to the Fourier basis, ΨD(∇x) is penalized rather
than ∇x itself. The change of basis is necessary to ensure incoherence between the representation
and measurement domains [8]. We chose to use a Gaussian filter for D(∇x), although other
denoising methods such as BM3D have been demonstrated [41].

The first subproblem is solved by taking the derivative, setting it equal to zero, and solving for
∇x. Taking the derivative gives

(AHA + αI)∇x̂i = AH∇y + α∇xi−1 (6)

A is a matrix of "spikes" corresponding to the sampled a-lines of a given b-scan. We observe that
AHA + αI is a diagonal matrix. In particular, the matrix AHA is only non-zero at the diagonal
elements k ∈ K that correspond to the sampled entries of ∇x. From this assumption, the solution
can be written

∇x̂i =

⎧⎪⎪⎨⎪⎪⎩
∇xi−1 +

1
αAH∇y , if k ∉ K

∇xi−1+AH∇y
1+α , if k ∈ K

(7)

In this formulation, α is a rough measure of the noise in observation y where α = 0 corresponds
to the noiseless case.

The solution of the second equation is found by using the proximity operator and takes the
following form

Ψxi = proxλ∥ · ∥1
(ΨD(∇x̂i, λ), β) (8)

which for proxλ∥ · ∥1
is evaluated by performing element-wise soft-thresholding of the argument.

The soft-thresholding operation soft() of matrix element ui by threshold β is defined for complex-
valued entries as sign(ui)max(|ui | − β, 0).

A summary of the DN-PC method is given in Algorithm 1. A key feature of this method is the
use of an adaptive denoising parameter λ. Similar to the approach used in [41], more of the impor-
tant image features can be recovered by first denoising strongly, and then iteratively decreasing the
degree of denoising. In DN-PC, λ has two values (λ1, λ2)which represent the vertical and horizon-
tal standard deviation of the 2-D Gaussian Filter D(·, (λ1, λ2)). The variability of λ is controlled by
setting λmax and λmin such that λ decreases logarithmically over J iterations. λmax and λmin may be
set differently for λ1 and λ2. The algorithm is structured to update over an inner and outer iteration.
The inner iteration solves subproblems for a fixed value of λ until the update reaches max iteration
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I or the solution update becomes small (set using τ), while the outer loop iterates J times over λ.
Algorithm 1: Denoised Predictive Coding (DN-PC)
Input: ∇yt, α, λmax, λmin, τ
Output: ∇xt

Initialize: ∇x0
t = AH∇yt;

Initialize: λ0 = λmax, δ = exp( log(λmax)−log(λmin)
J−1 );

for j = 1, 2, ...J do
while (i<I)&(update>U) do

∇x̂t,i =

⎧⎪⎪⎨⎪⎪⎩
∇xt,i−1 +

1
αAH∇yt , if k ∉ K

∇xt,i−1+AH∇yt
1+α , if k ∈ K

;

Ψ∇xt,i = soft(ΨD(∇x̂t,i, λj), β);
∇xt,i = Ψ

−1∇xt,i;
update = ∥∇xt,i − ∇xt,i−1∥2;
U = τ ∗ (1 + ∥∇xt,i−1∥2);

end
λj+1 = λj/δ;

end

2.1. Compressed sensing pipeline

A flow chart describing the DN-PC image reconstruction process is shown in Figure 1. Under-
sampling of the OCT volume is simulated by omitting a-lines at a regular interval. The sparsely
sampled OCT volume is reconstructed by iterating over 32 × 32 square pixel patches of each
b-scan. We empirically tested square patches of different sizes and found 32 × 32 pixel patches
to provide the best trade-off between reconstruction time and accuracy. A given patch (m, n)
is reconstructed over all T b-scans before advancing to the next patch, where m and n are the
row and column indices of a patch, respectively. To reconstruct patch (m, n) at b-scan t, the
difference image is acquired by first undersampling then subtracting patch (m, n) at b-scan t − 1.
Patch t − 1 is undersampled by multiplying it by the sampling matrix A. The DN-PC algorithm
produces a reconstruction of the difference patch which is then added to the full resolution patch
at (m, n, t − 1) to get the reconstructed patch (m, n, t).

One challenge in reconstructing the difference image is that the reconstruction accuracy is
dependent on the patch from the previous b-scan because errors from each b-scan can propagate
through the entire volume. A unique sampling scheme (Fig. 2) is proposed to mitigate this problem
by using staggered sampling and periodic full-resolution acquisitions. Staggered sampling means
that the sampling pattern is shifted by one a-line between adjacent b-scans to avoid omitting the
same a-lines for the entire volume. Full-resolution b-scans are acquired periodically to "reset"
any remaining propagated error.

2.2. Sampling

In this manuscript, "compression rate" ηa refers to the number of a-lines sampled in each image
patch, i.e. a 25% compression rate means that one in every four a-lines were acquired. The
compression rate of a b-scan ηb in units of pixels can be calculated as follows

ηb =
floor(ηa ∗

√︁
Npatch) ∗

√︁
Npatch

Npatch
(9)

where the operator floor() rounds the argument down to the nearest integer value, and Npatch is the
total number of pixels per image patch. Compression is defined in a third way for volumes which
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Fig. 1. DN-PC CS image recovery pipeline.

takes into account the periodically acquired full-resolution b-scans. This is the true compression
rate η which is a function of the full-resolution b-scan interval Ib. If a full-resolution b-scan is
acquired every ten b-scans in the volume, then Ib = 10. The true compression rate η is calculated
as follows

η =
(Nb ∗ (T/Ib)) + (ηb ∗ Nb ∗ (T − T/Ib))

Nvol
(10)

where Nb is the number of pixels per a full-resolution b-scan, Nvol is the number of pixels per a
full-resolution volume, and T is the number of b-scans in the volume.

Random a-line sampling is also employed at times in this study. In this case the randomly
chosen a-lines are consistent for patches in the same column to replicate random a-line sampling
in hardware. A-lines were chosen pseudo-randomly to constrain the maximum distance between
sampled a-lines depending on the sampling rate. Staggering was not employed in this case and
instead a new pattern was generated for each b-scan in the volume. Equation (10) applies to
random sampling in the same way as the other sampling methods.

3. Experimental methods

Multiple experiments were performed to test and validate the proposed DN-PC algorithm for
volumetric CS-OCT reconstruction. We first analyze the effects of denoising and PC by examining
pixel decay plots of an OCT image compared with its difference image and a noise-only image.
Next, we evaluated sampling strategies by testing reconstruction accuracy at multiple a-line
sampling rates and comparing staggered with uniform a-line sampling. The proposed DN-PC
method was then evaluated on OCT volumetric datasets of five different tissue samples acquired
at full-resolution and then synthetically sub-sampled. The results were quantitatively evaluated
and representative images were selected for visual comparison.
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Fig. 2. Diagram of DN-PC sampling using a-line staggering and periodic full-resolution
b-scan acquisitions.

3.1. CS algorithms for comparison

The performance of DN-PC was compared with two other algorithms. The first method uses
patch-based reconstruction of the raw OCT b-scan and iterates over all b-scans in the volume.
The employed algorithm, called YALL1, is an optimized technique for ℓ1 minimization [42], i.e.
is solves Eq. (1). The second method also uses a PC approach, but with our own implementation
of TVL1 reconstruction based on the method from Yang, et al. [43] called RecPF. This algorithm
utilizes a Total-Variation (TV) regularization term which promotes smoothness while also
preserving edges. Our implementation simply allows the method to be used on OCT volumes
and in the Predictive Coding framework, so we refer to it as TVL1-PC. All three algorithms were
tested and implemented in MATLAB 2020a using a Windows 10 desktop with an Intel Core
i9-9900K CPU at 3.6 GHz and 128 GB of RAM.
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3.2. Algorithm parameters

All methods tested in this study rely on reconstruction parameters which affect end performance.
We chose these parameters empirically and utilized the same ones in all tests unless otherwise
specified. For DN-PC, we chose α = 0.1, β = 1, λmax = [3, 4], λmin = [0.2, 0.4], J = 20,
I = 20, and convergence threshold τ = 10−3. We used a filter size of 7 × 9 for the Gaussian
denoising filter, which is rectangular to smooth vertically streaking that can appear as a result
of a-line subsampling. A Gaussian filter was chosen over other filters because it reduces image
noise and because it is a linear filter. The linearity is important because it means that filtering the
difference image is equivalent to filtering its constitutive frames and then taking the difference.
For YALL1, the Discrete Cosine Transform (DCT) was chosen as the sparsifying basis. The
convergence tolerance was 5 ∗ 10−4 and we set parameter ρ = 5 ∗ 10−4. While staggered a-line
sampling and periodic full-resolution b-scan sampling are not necessary to use with YALL1, they
are both employed in all cases for accurate comparison. For TVL1-PC, Ψ is the level-3 Haar
wavelet, the anisotropic TV measure is used, and the remaining parameters are set to µ = 104,
β = 20, τ = 0.5, and γ = (

√
5 + 1)/8.

3.3. Image acquisition and datasets

Each of the five datasets used in this study contain OCT volumes of different, structurally complex
tissue samples: human right atria [4,44], human uterus [5], human retina [45], bovine Anterior
Cruciate Ligament (ACL) [46,47], and human breast [48]. The human retina data is publicly
available and managed by Farsiu, et al. [45]. The heart, uterus, ACL, and breast datasets were
collected internally using a commercial TELESTO SD-OCT system (Thorlabs, GmbH, Germany)
with 6.5 µm axial and 15 µm lateral resolution. Each dataset was imaged with some degree of
lateral oversampling which is important to consider when analyzing CS reconstruction results.
The lateral spacings for the uterus, ACL, breast, heart, and retina datasets are 4 µm, 4.4 µm,
7.1429 µm, 6.3 µm, and 6.7 µm, respectively. All datasets had equal spacing between b-scans
except for the retina dataset which had 67 µm b-scan spacing. All OCT volumes were cropped to
512 × 800 × 800 pixels for consistent comparison with the exception of the retina volumes which
have only 100 b-scans. Prior to reconstruction, all datasets were converted to double precision
and the pixel intensity was scaled to a range of [0, 1].

3.4. Metrics

Several quantitative metrics were used to assess and compare CS reconstruction performance. The
first is Relative Error which measures the intensity differences between the true and reconstructed
volumes. It is defined as

Relative Error =
∥xrecon − x∥2

∥x∥2
(11)

where x is the vectorized original OCT volume and xrecon is the reconstructed version. When
evaluating the relative error for images, the Frobenious norm is used instead. Structural Similarity
Index (SSIM) is another popular metric which uses luminance, contrast, and structure to evaluate
the similarity between two images [49]. The SSIM of two images is a value between 0 and
1 where an SSIM of 1 indicates that the two images are identical. Where SSIM is reported
for a volume, we provide the average SSIM over all b-scans in the volume. Because we are
reconstructing image volumes, we also measure the 3-D Multi-Scale SSIM (MULTI-SSIM 3D)
[50]. This is a variant of the SSIM metric for image volumes that applies the same algorithm at
multiple scales and produces an aggregate score.

While measuring exact reconstruction error is important, we were also interested in analyzing
our ability to reconstruct important tissue features independently from speckle noise and other
noise sources. 2-D median filtering is a popular and light-weight choice for OCT image denoising.
In some cases, we applied a 3×3 pixel median filter to both the ground truth and the reconstructed
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volumes before measuring relative error and SSIM to obtain a more honest assessment of the
algorithm’s ability to reconstruct important tissue structures. Denoised metrics are reported
using the identifier (DN) (see Table 2).

4. Results

Figure 3 demonstrates how image sparsity is affected by denoising and difference image operations
using a small image patch of a glass cover slip. The pixel decay plots were generated by vectorizing
the image patch and sorting the pixels in descending order of intensity. Plots which decay to zero
more quickly correspond to a sparser image. The first column of images (Fig. 3(a), 3(c), and
3(e)) are image patches while the second column (Fig. 3(b), 3(d), and 3(f)) are the corresponding
difference images. The rows show an image of the cover slip (Fig. 3(a)), the same image when
denoised (Fig. 3(c)), and a patch of only noise (Fig. 3(e)). Figures 3(g) and 3(h) show the
pixel decay plots for the six image patches in the image domain and Discrete Cosine domain,
respectively. The images in Fig. 3(a)–3(f) show that the difference operation preserves noise,
but denoising prior to taking the difference (Fig. 3(c), 3(d)) isolates the structural differences
of interest between adjacent b-scans. In the image domain, the noise patch is the least sparse
while the denoised difference image is the most sparse. In all cases, the difference operation and
denoising created sparser image patches than their counterparts.

Fig. 3. Speckle noise degrades image sparsity. (a) Raw OCT image patch. (b) Raw
difference image. (c) Denoised image. (d) Denoised difference image. (e) Speckle noise
OCT image patch. (f) Noisy difference image. (g) Pixel decay plot for images a-f. (h) Pixel
decay plot for the discrete cosine transformed (DCT) images a-f. g and h show that the
denoised difference image is the sparsest of images a-f both in the image and DCT domains.
Scale bar = 100 µm.

The effects of sampling parameters on reconstruction performance were tested to determine an
optimal reconstruction configuration. Figure 4 shows the relative error from reconstructing a 50
b-scan subset of an OCT heart volume. In Fig. 4(a), three different a-line sampling rates ηa = 50%,
25%, and 10% were tested using a full-resolution interval Ib = 25 b-scans and a-line staggering.
The staggering suppresses error as a function of distance from the last full-resolution b-scan,
though a small linear increase in the error is visible with 10% sampling. Figure 4(b) demonstrates
the effect of staggered sampling by comparing the relative error of the same reconstructed volume
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using ηa = 50% but with and without staggering. In the "no staggering" case, the same a-lines are
omitted every b-scan. In both cases, the b-scan at index 1 is fully sampled. Without staggering,
the error increases linearly from 0.3 to 0.33 over 50 b-scans. With staggering, the error dips
initially and then plateaus to a value around 0.27. Not only did staggering lower the average
error, but it also suppressed the rate of error as a function of distance from the last full-resolution
b-scan.

Fig. 4. Compression analysis. (a) Relative reconstruction error for 50 b-scans at 3 a-line
sampling rates using the DN-PC method with a-line staggering and a full-resolution interval
of 25 b-scans (dashed line). Lower sampling rates cause both the average error and the
error rate as a function of distance from the full resolution b-scan to increase. (b) Relative
reconstruction error with and without a-line staggering at 50% sampling with a 50 b-scan
full-resolution interval. Alternating acquired a-lines between adjacent b-scans mitigates
residual error.

The observations from Fig. 4 were quantitatively verified for a full OCT volume from the
human cardiac dataset and reported in Table 1. Tweleve use-cases were tested using different
sampling methods, two a-line sampling rates ηa = 50%, 25%, and two full-resolution intervals
Ib = 10, 50. Three sampling patterns were used to compare the effects of staggering and uniform
versus random sampling. For the random sampling cases, the max gap was 3 a-lines for 50%
sampling and 6 a-lines for 25% sampling. The OCT volume dimensions were 512 × 800 × 800
pixels and we used a patch size of 32 × 32 pixels. The "Full-Res B-Scans" column of the table
shows the total number of full-resolution b-scans obtained for the two intervals. Similarly, the
column "Sampled A-Lines/B-Scan" shows that 25% and 50% sampling results in acquisition
of 200 and 400 a-lines per b-scan, respectively. The true compression rate η includes the
full-resolution b-scans so it is higher than the a-line sampling rate ηa (see Eq. (10)), though the
margin of increase is larger for smaller sampling rates. In all cases, staggering improves the
relative reconstruction error. The full-resolution interval trades off between relative error and η.
For example, in the case of ηa = 25% with staggering on, the relative error improves from 0.28
to 0.27 when Ib is lowered from 50 to 10, but at the expense of raising η from 26.5% to 32.5%.

4.1. USAF resolution target

A volume of the USAF 1951 Resolution Target was acquired to assess the impact of different
sampling rates on the lateral resolution of the reconstruction. The volume was acquired without
lateral or axial oversampling (i.e. with 15 µm lateral spacing). Figure 5 shows an example
en-face image from the full-resolution volume and reconstructed volumes using 50%, 25%,
and 10% a-line sampling (Fig. 5(a)–5(d)). Insets showing magnified views of group 2 for each
reconstruction are shown in Fig. 5(e)–5(h). Element 5 of group 2 is the smallest resolvable
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Table 1. Quantitative summary of the effects of a-line sampling ηa , staggering ,and the
full-resolution interval Ib on compression and relative error.

Staggering and Full-Resolution Interval Test
A-Line
Sampling ηa
(%)

Sampling
Type

Full-Res.
Interval Ib

Full-Res.
B-Scans

Sampled A-
Lines/B-Scan

Compression
Rate η (%)

Relative
Error

25

Uniform
Stagger

10 80 200 32.5 0.27

50 16 200 26.5 0.28

Uniform
10 80 200 32.5 0.29

50 16 200 26.5 0.32

Random
10 80 200 32.5 0.27

50 16 200 26.5 0.32

50

Uniform
Stagger

10 80 400 55 0.21

50 16 400 51 0.21

Uniform
10 80 400 55 0.24

50 16 400 51 0.25

Random
10 80 400 55 0.23

50 16 400 51 0.29

element in the full-resolution acquisition and in the 50% sampling reconstruction. With 25% and
10% sampling, elements 4 and 3 are the smallest resolvable line pairs, respectively.

Fig. 5. USAF Target lateral resolution test. En-Face images from OCT volume of the USAF
target at (a) full resolution, (b) 50% a-line sampling, (c) 25% a-line sampling, (d) 10% a-line
sampling. (e-h) Insets showing a magnified view of elements in line group 2.

4.2. Multiple tissue type test

DN-PC was used to reconstruct OCT volumes from five different tissue samples: human
heart, human uterus, human retina, bovine ACL, and human breast tissue. Example b-scans
from each of the reconstructed volumes are shown in Fig. 6. The different tissue types are
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organized by row and the different sampling rates are organized by column. The different samples
and images were chosen to showcase a variety of tissue structures, image textures, and noise
environments. Qualitatively, the examples with 50% sampling are nearly indistinguishable from
the corresponding full-resolution b-scans, while the 10% samples appear noisier and fine features
are blurred. Example en-face images from the same volumes are shown in Fig. 7. Similar
degradation of image quality is observed for 10% a-line sampling compared with 50%. Unlike
in the b-scan images, horizontal streaking is visible in the en-face images along the fast-scan
axis which are artifacts from errors in reconstruction. The retina volumetric scans include only
100 b-scans so en-face images from those samples were omitted as they do not provide valuable
information even in the full-resolution volume.

Fig. 6. B-Scan examples from DN-PC reconstructed OCT volumes. Rows correspond to
the tissue sample and columns correspond to the a-line sampling rate. Scale bar = 500 µm.

Reconstructed volumes from the uterus and ACL datasets were rendered in 3-D to compare
volumetric features with the full-resolution volumes. Figure 8 shows images from the uterus
volume rendering in the first row and the ACL volume in the second row. Sampling rates are
organized by column. Collagen fibers were labelled and identified in the full-resolution volumes
(first column) which are visible in the reconstructions at both 50% and 25% a-line sampling.
The 3-D perspective shows the ability of DN-PC reconstructed volumes to preserve volumetric
features visible in both the en-face and axial image planes.

DN-PC volumetric reconstruction performance for 5 different tissue types was quantitatively
measured and reported in Table 2 which shows the relative error and average SSIM of each
reconstruction. A representative OCT volume from each of the 5 tissue types was reconstructed
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Fig. 7. En-Face image examples from DN-PC reconstructed OCT volumes. Rows
correspond to the tissue sample and columns correspond to the a-line sampling rate. Scale
bar = 500 µm.
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Fig. 8. 3-D Reconstructions. OCT volumes of human uterus (first row) and bovine ACL
(second row) tissue reconstructed using DN-PC. The first column is the fully sampled volume,
the second column was reconstructed with 50% a-line sampling, and the third column was
reconstructed with 10% a-line sampling. The white arrows point to tissue structures and
artifacts of interest. Scale bar = 150 µm.

at three a-line sampling rates ηa = 50%, 25%, and 10% using staggering and Ib = 10. Relative
error and SSIM are reported with and without denoising (labeled DN) following reconstruction.
The denoised results are improved over the raw data results across all test cases which suggests
strong preservation of tissue structures. DN-PC achieved the best performance for the cardiac
volume, while the retina and breast volumes proved the most challenging.

Table 2. Quantitative summary of relative error using DN-PC for 5 different
tissue sample types at a-line sampling rates of 50%, 25%, and 10%.

DN-PC 3-D Reconstruction Results

Sample Type
Sampling
Rate ηa (%) Rel. Error

Rel. Error
(DN)

Average
SSIM

Average
SSIM (DN)

Heart
50 0.21 0.10 0.54 0.73

25 0.27 0.14 0.40 0.61

10 0.30 0.16 0.35 0.54

Retina
50 0.38 0.17 0.45 0.58

25 0.49 0.22 0.25 0.40

10 0.52 0.25 0.18 0.31

Uterus
50 0.27 0.14 0.55 0.69

25 0.36 0.20 0.35 0.51

10 0.40 0.25 0.27 0.40

ACL
50 0.27 0.15 0.54 0.68

25 0.36 0.21 0.32 0.48

10 0.42 0.28 0.23 0.35

Breast
50 0.35 0.18 0.46 0.59

25 0.46 0.25 0.28 0.43

10 0.51 0.30 0.21 0.32
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4.3. Algorithm test

DN-PC performance was compared with two other CS reconstruction methods, YALL1 and
TV-L1 PC using 100 b-scan sub-volumes of all five tissue samples at ηa = 50%. Staggering and
Ib = 10 were used in all cases for accurate comparison. In each case, relative error, average
SSIM, MULTI-SSIM 3D, and computation time were recorded. Quantitative results are reported
in Table 3.

Table 3. Reconstruction algorithm comparison test using 50%
a-line sampling.

Algorithm Comparison Test

Algorithm

Sample Type Metric YALL1 TVL1-PC DN-PC

Heart

Rel. Error 0.3518 0.2568 0.2768

SSIM 0.5511 0.5762 0.4476

MULTI-SSIM 3D 0.8075 0.8978 0.8806

Comp Time (min) 48.79 616.46 19.12

Retina

Rel. Error 0.3244 0.3515 0.3806

SSIM 0.5559 0.4971 0.3852

MULTI-SSIM 3D 0.8158 0.8583 0.8481

Comp Time (min) 50.67 593.2 20.17

Uterus

Rel. Error 0.3472 0.2323 0.2566

SSIM 0.5403 0.6277 0.4891

MULTI-SSIM 3D 0.8247 0.9272 0.9078

Comp Time (min) 47.23 605.74 18.74

ACL

Rel. Error 0.3320 0.2343 0.2565

SSIM 0.5250 0.6026 0.4876

MULTI-SSIM 3D 0.7934 0.9096 0.8974

Comp Time (min) 50.08 581.4 19.56

Breast

Rel. Error 0.3795 0.3264 0.3492

SSIM 0.5426 0.5310 0.4063

MULTI-SSIM 3D 0.8238 0.8874 0.8738

Comp Time (min) 50.23 585.3 20.08

Figure 9 shows an example b-scan from the heart dataset at full-resolution and reconstructed
using each algorithm at 50% a-line sampling. Images in Fig. 9(a)–9(d) are the full-resolution
b-scan, YALL1 reconstruction, TVL1-PC reconstruction, and DN-PC reconstruction, in that
order. Insets of a magnified portion of the full-resolution myocardial tissue surface are shown for
each algorithm in Fig. 9(e)–9(h), where the inset is marked by the rectangle (red). Difference
images at the same inset location are shown in Fig. 9(i)–9(l). The insets show that YALL1 is
susceptible to streaking artifacts from the a-line sampling. The TVL1-PC reconstruction is of
similar quality to the original image, however, the difference image is also has streaking. DN-PC
did not reconstruct the original image as precisely as TVL1-PC, but the difference image contains
more changes from tissue structure rather than an exact noise pattern. Comparing with Table 3,
DN-PC has similar relative error and worse SSIM score then TVL1-PC and takes considerably
less time to reconstruct. In the case of the heart sample, the 100 b-scan volume was reconstructed
in 19.12 minutes with DN-PC and 616.46 minutes (over 10 hours) with TVL1-PC. Average
SSIM tended to have a large discrepancy between the TVL1-PC and DN-PC results despite
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qualitatively appearing very similar. The MULTI-SSIM 3-D metric gave much better scores to
all the reconstructions and reflected the qualitative similarity between TVL1-PC and DN-PC
reconstructions as observed in Fig. 9.

Fig. 9. Heart tissue CS reconstruction (b-scans) at 50% a-line sampling. (a) Original. (b)
YALL1 reconstruction. (c) TVL1-PC reconstruction. (d) DN-PC reconstruction. Insets
indicated by the red square for the original (e), YALL1 (f), TV-L1 (g), and DN-PC (h)
images. Insets from the difference images for the original (i), YALL1 (j), TV-L1 (k), and
DN-PC (l). Inset location is marked by the rectangle (red) in a-d. Scale bar = 500 µm.
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5. Discussion

This study explored the proposed compressed sensing technique Denoised Predictive Coding
(DN-PC) and it ability to reconstruct highly undersampled OCT volumes. This study is first
to evaluate a CS-OCT method using five different, clinically relevant tissue types. A critical
step for CS to be adopted in clinical OCT systems is to demonstrate that the method provides
reliable reconstructions of complex, varied tissue types without prior knowledge of the sample.
Quantitative results indicated that tissue type did not affect image reconstruction performance to
the same degree as other parameters like sampling rate. However, two sample types, retina and
breast, were more challenging to reconstruct than the others. It’s likely that the retina dataset
had higher reconstruction error because it was acquired using a different OCT system than the
other four datasets. The noise variance in particular higher for the retina dataset, suggesting
that denoising parameters like λmax, λmin should be adjusted for image volumes collected with
different OCT systems. The source of error in the breast sample is less clear, but one explanation
is that adipose tissue could be a difficult feature to reconstruct. Adipose visually look like small
bubbles in OCT b-scans and because DN-PC excels at preserving the overall tissue structure it
will struggle the most when the tissue is composed of mostly small, fine features. This problem
could be mitigated by adjusting the denoising parameters to prevent potential blurring of the
adipose edges. While this test laid important groundwork for developing a CS-OCT solution that
can generalize to any tissue type, further investigation using a larger pool of samples is needed to
understand how reconstruction behavior is related to tissue structure.

Reconstruction performance was characterized in this manuscript by relative error, SSIM,
MULTI-SSIM 3D, and computation time. Because no gold standard metric exists to assess
reconstruction accuracy, these metrics were chosen assuming that they were the most common
and intuitive measures available. One area of ambiguity with regard to performance analysis is
the reconstruction of noisy images (which applies to all OCT images). In Table 2 for example,
the relative error of the raw reconstructions differed significantly from the denoised (DN)
reconstructions. Ultimately, we felt it was important to include both measures because they
inherently explain different aspects of the algorithm performance. The denoised results measures
the ability to reconstruct important tissue structures independently of noise, while the raw
reconstruction results measure how closely the reconstruction exactly matches the raw image,
which could be equally important in applications like Speckle Variance imaging that rely on
noise statistics [2].

The algorithm comparison test in Table 3 revealed interesting results and behavior of the
tested methods. While DN-PC indeed has a consistent disadvantage in SSIM, the SSIM from the
YALL1 results are misleading as the images contain streaking artifacts which render the images
unusable. Comparing the ability of each method to preserve tissue structure, the MULTI-SSIM
3D gives a more accurate representation. TV-L1 consistently outperforms DN-PC by a small
margin, but at the expense of infeasibly long computation time. We recommend that DN-PC be
used over the other methods in any situation in which the user intends to use a-line subsampling,
would like to reconstruct the volume quickly, and if the b-scan spacing is small. If reconstruction
time on the order of hours is no issue for the user, then the TV-L1 approach is an adequate
substitute.

A unique challenge in any CS framework is the formulation of a sampling strategy which
works with the imaging hardware and enables high accuracy reconstruction of the undersampled
data. Recent studies have proposed hardware techniques for undersampling using CCD camera
masking materials [21] and masking spectral data through a DAQ [20], however, these methods
only compress the signal without improving acquisition time. In order to compress and acquire
volumes more quickly, modifications have to be made to the scanning method. Wang, et al.
demonstrated this for an OCT endoscope by randomly changing the step-size during pull-back
acquisition [22], however, this approach is specific to pull-back endoscopes and cannot be applied
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to bench-top systems. In a-line subsampling, the desired undersampling rate can be controlled by
over-driving the lateral scanning mechanism (e.g. galvo) to the desired speed. This modification
can be applied to existing OCT systems with virtually no hardware changes. Furthermore,
undersampling this way directly reduces scan time. For example, using DN-PC with 25% a-line
sampling and a full-resolution interval of 10 b-scans would reduce a one minute scan to 19.5
seconds. This motivated our choice to design a reconstruction algorithm specifically for a-line
subsampling rather than spectral subsampling. Reducing scan time could impact areas of OCT
research like whole organ imaging [4,51,52], high-speed endoscopic imaging [53,54], and 4-D
imaging [6,55]. With an extension to time-lapse imaging, CS-OCT could impact additional
application such as particle tracking [56,57], elastography [58–60], cilia and mucus movement
[61,62], developmental biology [63], and Radio-Frequency Ablation (RFA) [64–66].

6. Conclusion

We developed and tested Denoising Predictive Coding (DN-PC), a new method for 3-D CS-OCT
reconstruction of highly undersampled image volumes. The unique combination of predictive
coding and integrated denoising yielded high accuracy reconstructions and superior computation
time over similar methods. We demonstrated that DN-PC was robust to tissue type without
a-priori knowledge of the sample. CS-OCT has the potential to enable high data volume
experiments with long scan times that were previously infeasible and represents an important
step towards commercial and clinical adoption of CS-OCT.
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