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Abstract: Automatic quantification and visualization of 3-D collagen fiber architecture using
Optical Coherence Tomography (OCT) has previously relied on polarization information and/or
prior knowledge of tissue-specific fiber architecture. This study explores image processing,
enhancement, segmentation, and detection algorithms to map 3-D collagen fiber architecture
from OCT images alone. 3-D fiber mapping, histogram analysis, and 3-D tractography revealed
fiber groupings and macro-organization previously unseen in uterine tissue samples. We applied
our method on centimeter-scale mosaic OCT volumes of uterine tissue blocks from pregnant and
non-pregnant specimens revealing a complex, patient-specific network of fibrous collagen and
myocyte bundles.
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1. Introduction

Collagen is an essential protein in the human body that provides both structural and functional
support in human organ tissue. Collagen forms as hierarchical bundles of fibers that begin at
a molecular scale and end at the scale of entire organs [1]. On the macro-scale (millimeter to
centimeter lengths), collagen fiber bundles coalesce and organize according to tissue function.
This function can be to facilitate mechanical motion like in the case of tendon [2,3], provide
a path of propagation for electrical signals in the heart or uterus [4,5], or simply support the
curvature of the cornea [6,7]. To better understand and model these complex functions requires
correspondingly detailed and complex models of the collagen architecture. Such models can be
challenging to obtain in cases when collagen fibers form into complex three-dimensional networks,
are embedded in muscle cells and tissue heterogeneities, and exhibit wide intra-specimen variance.

Optical Coherence Tomography (OCT) is a volumetric imagingmodality withmicron resolution
capable of investigating tissue structures like collagen fibers in human and animal tissue [8].
Compared to similar optical microscopy techniques, OCT offers larger fields-of-view (0.5 cm) and
can be used in-vivo. The combination of high resolution and field-of-view makes OCT an ideal
candidate for studying collagen macro-structure as previously described in the anterior cruciate
ligament (ACL) [9], cervix [10], and myocardium [11,12]. Modeling collagen fiber networks
with OCT over many centimeters of tissue requires automated analysis of massive datasets.
Image processing methods have been proposed that automatically extract fiber orientation
from en-face OCT images using techniques based on image gradients [10,13] and the Radon
Transform [14]. Numerous methods have been demonstrated for other imaging modalities like
Second Harmonic Generation Microscopy (SHG) and Fluorescence Microscopy [15–20]. These
microscopy techniques provide high contrast images of the microscopic organization of collagen
and the extra-cellular matrix through fluorescent labeling and biomarkers that associated image
processing algorithms inherently leverage in detection and modeling tasks. As a result, these
processing methods tend to translate poorly to OCT images with lower signal-to-noise and spatial
resolution.
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While 2-D analysis has revealed valuable insight into the collagen structure-function relation-
ship, in some cases 3-D analysis is necessary. Polarization-Sensitive OCT (PS-OCT) extracts
additional information which can be used to quantify the orientation of collagen fibers. PS-OCT
has been used to create 3-D tractography of collagen fibers in mouse hearts [21], the oral mucosa
[22], cartilage [23], and neural pathways of the rat brain [24], but has seen limited demonstrations
outside these models. Gan, et al. was the first to show that using structure information from
Spectral Domain OCT (SD-OCT) images alone was sufficient to model 3-D fiber networks in
the case of the human myocardium [12]. A limitation of this approach, however, is that it relies
on the assumption that collagen fibers are roughly parallel to the tissue surface and is therefore
incapable of modeling fiber networks with higher 3-D complexity. Furthermore, 3-D methods
that work well for microscopy images like second harmonic generation microscopy tend to extend
poorly to OCT images due to the unique challenges of image quality (high noise, low contrast,
artifacts, etc. . .). New approaches in deep learning have also been introduced for extracting fiber
networks from fluorescence microscopy image volumes [25]. These methods produce promising
results at high deployment speeds, but require massive amounts of data and experts for labeling
training data.
More sophisticated 3-D methods are necessary to study particularly complex tissues like the

human uterus. The human uterine wall comprises three distinct layers: the perimetrium, the
outermost layer made of connective tissue; the myometrium, a thick middle layer consisting
of smooth muscle cells and connective tissue including collagen and elastin [26]; and the
endometrium, the innermost layer consisting of epithelial cells and stromal tissue. The smooth
muscle cells comprising the myometrium are long and tubular; thousands of these cells align
parallel to each other in sequence, forming a myocyte. Multiple myocytes further combine
to form fascicles that are separated from each other by connective tissue composed mostly of
collagen. This connective tissue acts as a sheath and provides structural scaffolding to which the
muscle fibers can adhere. Our preliminary histology results have shown that in a pregnant uterus
myometrium, smooth muscle cells and collagen account for approximately 80 and 20 percent of
the total tissue volume, respectively.

In the uterus, collagen has a complex three-dimensional architecture that is associated with the
remodeling process which occurs as a result of pregnancy. Previous studies using both DT-MRI
[27] and histological processing have revealed organizational structure on the centimeter scale.
Lutton, et al. were the first to do in-depth 3-D collagen fiber modeling of a human uterus specimen
[28]. They used image processing of histology slides to create a 3-D model from a single tissue
wedge. This approach revealed complicated organization at the micron scale, however, their
method is too resource intensive to feasibly use in a multi-specimen studies. Therefore, a method
capable of 3-D collagen fiber modeling that can both capture micron-scale structure and be used
efficiently on multiple specimens is essential to improving our understanding of uterine tissue
mechanics. Furthermore, little is know about typical uterine architecture so this method must
also model fibers at random orientations with no prior assumptions of the tissue’s organization.
We propose a novel process for high speed imaging and analysis of 3-D collagen fiber

organization using SD-OCT and an ensemble of image processing methods. Our approach has
three phases: image enhancement, fiber orientation mapping, and fiber tractography. In this
manuscript, we will detail the mechanics of each of these steps and validate them on simulated
image volumes of fiber structures. The remainder of the manuscript will demonstrate the
performance of our method on mosaic OCT image volumes of multiple human uterine tissue
specimens. We show that the 3-D uterine architecture can be modeled in both pregnant and
non-pregnant specimens and that quantitative analysis reveals new and exciting physiological
structures and patterns such as fiber groupings.



Research Article Vol. 11, No. 10 / 1 October 2020 / Biomedical Optics Express 5520

2. Methods

A multi-phase image processing pipeline was developed to obtain quantitative fiber orientation
information from stitched OCT volumes of both pregnant and non-pregnant uterus specimens.
Figure 1 graphically shows this workflow to demonstrate the processing flow from image
acquisition to 3-D fiber tractography. This section begins by explaining the 3-D geometry used
to describe collagen fiber orientation and then describes the algorithms and implementations
used in each phase: image enhancement, 3-D fiber orientation mapping, and 3-D tractography.

Fig. 1. Graphical representation of the 3-D fiber analysis pipeline. (a) Sample preparation,
OCT volumetric imaging, and stitching to acquire mosaic volumes. (b) Image enhancement
pipeline for reducing noise and artifacts while improving fiber contrast. (c) 3-D fiber
orientation maps produced through a combination of b-scan and en-face analysis to obtain
θ and φ. (d) Histogram analysis of θ and φ reveals fiber groups while a 3-D particle filter
technique is used to create fiber tracts.

2.1. Fiber geometry

To obtain the 3-D orientation of collagen fibers from OCT image volumes requires two angles, θ
and φ. Figure 2(a) shows these how these angles are defined within the image volume coordinate
system. The solid red arrow represents a single fiber of unit length which makes an angle with
the positive Z-axis (φ) and the positive X-axis (θ). The angle θ can be directly visualized and
measured from an en-face image; however, an orthogonal image plane likely does not exist to
directly measure φ. Instead, we measure its projections onto either transverse plane which we
will refer to as φx and φy and are drawn as the dashed red lines in Fig. 2(a). The projections are
simply the XZ or YZ image planes that intersect each collagen fiber. The fiber incline angle φ is
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calculated using the following trigonometric relationship:

φ = arctan
cos φx

cos θ sin φx
= arctan

cos φy

sin θ sin φy
(1)

Because φ can be calculated from φx or φy, measurement of the fiber incline from the image
volume is only needed for a single plane, i.e. a b-scan. This relationship implies that φx and φy
are often inter-changeable, in which case we will refer to the projected fiber incline angle as φx,y
for convenience.

Fig. 2. Coordinate system and fiber orientation diagram. (a) 3-D image volumes are imaged
as a series of b-scans (XZ) with uniform spacing in Y to capture the entire uterine tissue
slice. The solid red arrow represents a collagen fiber of unit length which is defined by the
angle it makes with the positive Z-axis (φ) and the positive X-axis (θ). θ is measured directly
from en-face image slices, while φ is calculated from θ and its projection onto either either
transverse plane, i.e. φx or φy (Eq. (1)). (b) The measured θ and φ orientations are displayed
in this manuscript according to the shown HSV colorwheels. Based on the orientation of the
tissue during imaging, an angle of φ = 0◦ (red) indicates fiber alignment perpendicular to the
tissue surface while φ = 90◦ (cyan) indicates fiber alignment parallel to the tissue surface.

The color maps in Fig. 2(b) show how the angles θ and φ are displayed in this manuscript. The
HSV colormap was chosen since it is cyclical, i.e. uses the same color to represent the minimum
and maximum values (in this case 0◦ and 180◦).
With respect to the uterine tissue slice, θ can be interpreted as measuring a collagen fiber’s

alignment within the tissue surface plane. φ can be interpreted as the fiber’s incline within the
tissue slice. Because φ is defined with respect to the positive Z-axis, a measurement of φ = 0◦
would indicate a fiber’s aligned vertically while a measurement of φ = 90◦ would indicate a
fiber’s aligned horizontally or parallel to the tissue surface. Defined anatomically, the Z-axis
corresponds to the through-thickness dimension of the uterus sample while the X and Y -axes
align with either the longitudinal or meridianal anatomical directions depending on location.
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2.2. Image enhancement

Detection and analysis are image processing tasks that can be uniquely challenging to apply to
OCT b-scans, particularly for the task of fiber orientation analysis. A custom image enhancement
pipeline was developed (see Fig. 1(b)) with the specific goal of improving b-scan image quality
in a way that produces the most accurate results from downstream fiber orientation analysis.
Figure 4 outlines each step of this process.

To enhance the imaged collage fibers, we first confirmed the OCT features that correspond to
collagen in uterine tissue. Generally in OCT images, collagen fibers are bright when compared
to the signal background and surrounding tissue. Biologically, collagen is a fibrous structure that
weaves between smooth muscle cell bundles. In an OCT image, this appears as a bright fibrous
network surrounding lower intensity regions of muscle fibers. This structure is shown in Fig. 3,
which provides a visual comparison between histology (Fig. 3(a)) and an en-face OCT image
(Fig. 3(b)).

Fig. 3. Matching OCT and histology to verify tissue composition in a non-pregnant uterine
sample. (a) Masson’s trichrome stain histology section from anterior location. The orange
stain indicates smooth muscle cells (SMCs) and the blue stain indicates collagen fibers. (b)
OCT en-face image from the matching uterine tissue sample. Visual comparison of (a) and
(b) indicates that the bright intensity fibers in the OCT image are collagen and the darker
intensity areas between the fibers are SMCs.

The first objective for pre-processing was to improve image quality by de-noising and enhancing
the contrast of fibrous tissue features. Speckle noise is the primary noise component in OCT
images and a number of sophisticated techniques exist for de-noising OCT images while also
preserving features of interest. For this application VBM3D was found to be most effective
[29]. When applied to an image volume, VBM3D (a video-based variant of BM3D) uses a
collaborative filtering approach to both de-noise and preserve smooth, connected features that
span adjacent b-scans.
A troublesome artifact for fiber orientation detection is surface reflections. This artifact is

common when imaging fresh tissue samples which have to remain hydrated during imaging and
tend to have a thin layer of moisture on the tissue surface. When the surface of the tissue is
flat and aligned perpendicular to the laser source, this surface liquid acts like a mirror which
results in saturation of the a-line at that location. These bright vertical streaks can corrupt large
portions of a b-scan and obscure the underlying tissue features. Both Fourier and image gradient
based fiber orientation methods have no simple way to distinguish these artifacts from a vertically
orientated collagen fiber so the artifact must be removed prior to analysis. We accomplish this
using a simple wedge filter centered at the vertical orientation. While a vertically aligned fiber
has some width and natural variation, reflection artifacts are perfectly vertical and have constant
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image intensity. This feature is leveraged by using a narrow wedge filter which will only filter
lines that are exactly vertical without degrading image quality.
The final challenge is to improve image contrast. This challenge has two components which

are the inherently narrow dynamic range of OCT images and the mean intensity fluctuations
that occur from image stitching and depth-based intensity roll-off. This was corrected by first
applying a homomorphic filter followed by histogram equalization. The homomorphic filter
or "high-frequency emphasis" filter improves the sharpness of tissue and fiber edges while
also creating an even mean intensity across the images. Intensity re-mapping is employed
following the homomorphic filter to optimize the dynamic range. Pixel intensities on the range
of [0.138, 0.333] were mapped to a normalized intensity range of [0, 1].

Figure 4 outlines each step of the pre-processing image enhancement pipeline an unprocessed
b-scan from a non-pregnant (NP) anterior uterine tissue sample. In this example, reflection
artifacts are prominent and obscure the underlying fiber architecture. Low contrast and speckle
noise further obfuscate the tissue features. Figure 4(b) shows the same b-scan following artifact
removal. Both the reflection artifacts and natural streaking texture of the b-scan have been
smoothed out. Figure 4(c) is the denoised image acquired by applying VBM3D denoising to the
image in Fig. 4(b). This step further cleans the image and creates smoother, more connected fiber
tracts. Figure 4(d) is the final enhanced b-scan which results from homomorphic filtering of the
denoised image in Fig. 4(c).
The image patches shown in Fig. 4(e) and Fig. 4(f) provide a closer look of the image

enhancement effect. Both patches are from the same section of tissue marked by the red squares
in Fig. 4(a) and Fig. 4(d). Figures 4(g) and 4(h) show the fiber distribution obtained by the
Radon-based method when applied to the image patches in Fig. 4(e) and Fig. 4(f), respectively.
The Radon-method (described in the next section) provides a distribution of the fiber orientation
content of an image, such that the distribution peak corresponds to the dominant orientation of
fibers in the image. The pre-processing has two appreciable effects on the fiber distribution. The
first is that the reflection artifact filter significantly reduced the peak centered at 90◦. This is the
largest peak in the un-processed distribution (Fig. 4(e)) meaning that our automated method
for determining fiber incline would falsely classify fibers in this patch as having a 90◦ incline.
The second effect is that the peaks corresponding to the true fiber orientation are enhanced.
Comparing Fig. 4(e) and Fig. 4(f) which are displayed at the same scale, the peaks at 10◦ and 60◦
are taller and more distinguishable for the processed patch distribution which further improves
the performance of the automated fiber incline detection.

2.3. B-scan fiber orientation mapping

Following pre-processing of the OCT image volume, the fiber incline orientation is iteratively
measured in each b-scan and en-face orientation is measured in the perpendicular image plane
(Fig. 1(c)). Fiber orientation analysis of stitched volumes requires segmentation of the tissue
because only the orientation of the fibers should be analyzed and not the tissue shape. This
requires edge detection of the top and bottom tissue surface so that the 3-D surface is acquired.
First, mean a-line intensity is used to crop each b-scan laterally. The top surface is then detected
for each a-line by extracting the max intensity location in the standard deviation filtered image.
The bottom surface is detected by calculating the first pixel location in each a-line that hits the
noise floor based on our imaging system’s typical intensity roll-off. The lower edge is additionally
corrected to obtain a boundary that is smooth and varies with the upper edge. Applying this
procedure to every b-scan obtains the 3-D tissue surface.

Despite fiber enhancement processing, automatically determining fiber orientation from b-scans
using gradient based methods is infeasible due to the varying fiber width and the subtle vertical
streaking that results naturally from normal OCT acquisition. To obtain accurate fiber orientation
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Fig. 4. Step-by-step process of b-scan image enhancement. (a) Un-processed b-scan from
a non-pregnant (NP) anterior uterine tissue sample. (b) Resulting image from vertical
reflection artifact removal. (c) VBM3D denoised image which smooths the image and
fiber tracks by mitigating speckle noise. (d) The fully enhanced b-scan which results from
homomorphic filtering of the denoised image. Image enhancement improves the Radon-based
fiber orientation analysis. (e) Un-processed image patch from marked in (a) by the green
square. (f) Processing image patch from the same location as (e). (g) Radon-based fiber
orientation distribution for image patch (e). (h) Radon-based fiber orientation distribution
for image patch (f). Reflection artifact removal has reduced the peak at 90◦ while denoising
and contrast enhancement have exaggerated the fiber-based peaks at 10◦ and 60◦. Scale Bar
= 0.5 mm
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measurements a Radon-based method was employed that has been previously demonstrated on
SHG and OCT images for ultra-fast fiber orientation analysis [14,30].

The Radon-based method uses a simple multi-step approach to obtain quantitative distributions
of collagen fiber orientation within an image patch. First, the image patch is converted to Fourier
space, bandpass filtered to pass fiber lengths of interest, and then shifted using fftshift() in
MATLAB so the lowest frequencies are at the center of the image and frequency increases as
you move radially away from the center. The qualitative orientation information captured in
Fourier space is converted to a quantitative result by taking the Radon transform of Fourier space
image. Due to the FFT shift, the center row of the Radon transform then corresponds to the
concentration of fibers oriented at a given angle. The peak of this row is analyzed to extract the
dominant fiber orientation within the image patch. Through manual measurement of the uterine
b-scans, a conservative estimate of fiber diameter and length was determined and the band-pass
filter range was accordingly set to [0.255, 4.59] mm−1.
The free space setup of the OCT system used in this study resulted in b-scans which capture

both the tissue sample and its surface topology. Consequently, we found drastic changes in
the tissue surface topology to be commonplace which further complicated the task of using
b-scans to sample and analyze the uterine fiber architecture. We addressed this challenge by
using a custom segmentation procedure that we will refer to as "patch processing" where local
patches of the tissue are segmented and analyzed iteratively rather than analyzing all the tissue
at once. The "patches" are square regions that are generated parallel to the local tissue surface.
An optimization procedure is used to find the patch size which fills the most space between the
top and bottom tissue surface. Given a minimum patch size and fixed overlap between adjacent
patches, the uterine tissue can be segmented and analyzed for arbitrary tissue topology. Patches
are generated for each b-scan of the mosaic volume, the Radon method is applied to each patch,
and the dominant fiber orientation within the patch is recorded as the distribution peak. This
process is repeated for all b-scans in the image volume to produce a continuous fiber orientation
map φx,y using 2D nearest neighbor interpolation.
Figure 5 shows the b-scan fiber analysis process for a single b-scan (Fig. 5(a)) from a PG

sample as an example. The uneven surface of the tissue required a piece-wise segmentation
procedure to measure φx. This procedure involves first using edge detection to obtain the upper
and lower tissue surfaces, the results of which are highlighted in red in Fig. 5(a). Next, the
b-scan is sampled into overlapping square "patches" which are generated parallel to the local
tissue surface. Each of these patches (shown as blue squares in Fig. 5(a)) are processed using the
Radon-based fiber orientation method to obtain the dominant orientation within the patch.
A magnified view of the green patch in Fig. 5(a) and its corresponding fiber orientation

distribution is shown in Fig. 5(c) and Fig. 5(d). The distribution has a peak at 25◦ (red asterisk)
which matches the dominant orientation of fibers in that patch. Figure 5(b) shows the resulting
fiber orientation incline graph for the full b-scan. The red circles are the dominant angles
measured in each patch and the blue line is the interpolated result. By repeating this procedure
for each b-scan in an image volume, we obtain a full φx fiber map which gives the projected fiber
incline at each (x, y) location of the imaged tissue.

The patches are constrained to be square for several reasons. One benefit of square images is
that no corrections are needed to adjust for the difference in dimension size which is a necessary
step for applying the Radon-based fiber distribution analysis to non-square images. This reduces
the complexity of the algorithm and improves the computational speed. Rectangular patches
could improve the sampling results by allowing the patch length to freely adjust to the exact
tissue surface. It is non-trivial to adaptively adjust the patch width in this way and it’s unclear
the extent to which this change would improve the accuracy of the fiber orientation analysis,
therefore, the straightforward square patch approach was chosen.
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Fig. 5. Example of the b-scan pre-processing pipeline with edge detection and image
patching. (a) Enhanced b-scan from pregnant (PG) fundus specimen (Scale bar = 0.5 mm).
Upper and lower tissue edges are drawn in red and processing patches are displayed as the
blue squares. (b) Interpolated fiber orientation across the full b-scan. Red circles indicate
the fiber orientation measured in each blue patch. (c) Inset of the green patch in (a) (Scale
bar = 200 µm). (d) Fiber orientation distribution for the image patch in (c). The peak at 20◦
corresponds to the dominant fiber orientation captured in the image patch.

OCT b-scans were acquired with a 15 µm lateral resolution and 6.5 µm axial resolution.
This results in a non-square pixel size which means angle measurements will be distorted if a
correction is not applied. Therefore, the φx,y maps are adjusted following interpolation according
to the following transformation

φx,y = arctan(α tan φx,y) (2)

where alpha is the ratio of the axial to the lateral resolution.

2.4. 3-D fiber orientation mapping

A 3-D description of a collagen fiber’s orientation is achieved by obtaining the associated angles
θ and φ (Fig. 1(c)). The en-face fiber orientation θ is calculated using a traditional gradient-based
method which has been previously demonstrated on OCT images of human heart tissue [13]. The
gradient method takes an en-face OCT image as input, divides the image into small windows,
and then calculates the fiber orientation detected within the windowed area. Local orientation is
determined by the direction along which the image gradient within each window is maximized.
The image gradient is obtained using 2-D, 3 x 3 pixel, horizontal and vertical Sobel filters Gx
and Gy, and the gradient direction is θ ′ = arctan(Gy/Gx). A D’Agostino-Pearson κ2 (normality)
test was used to determine if a windowed image area contained a valid fiber orientation. A κ2

threshold value of 0.02 and window size of 51 x 51 pixels was selected for all analysis. Variance
in tissue topology also required partial segmentation of the en-face images to calculate θ. This
was done by using the tissue surface obtained by edge detection during the b-scan fiber analysis
and finding the pixels between the top and bottom tissue surfaces for each en-face plane. If any
portion of a window contained pixels beyond the extent of the volume, than that window’s result
was omitted.

An en-face orientation θ was calculated at every valid location of the OCT volume by iteratively
applying the described gradient method to each en-face OCT image. The result is a 3-D map
θ(x, y, z). The final step of the mapping process is to obtain the corresponding 3-D map of fiber
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incline orientation φ(x, y, z). This is calculated using Eq. (1), where φx,y(x, y) is assumed to be
constant with depth.

2.5. 3-D tractography

In addition to creating fiber orientation maps, we are interested in modeling the collagen
architecture in 3-D to create a visual representation of the tissue (Fig. 1(d)). To this end, we
employed a tacking technique called particle filtering [31]. The goal of particle filtering in this
application is to find the most likely path through the OCT volume which matches a collagen fiber
given both the OCT image features and the detected orientations acquired using our 3-D mapping
method. This technique was previously demonstrated on en-face OCT images of human atrial
tissue [12] and has been adapted to work for 3-D volumes for the purposes of this manuscript.
We chose a particle step size of 15 pixels and generated 80 particles per step. The particle start
points were evenly distributed in the en-face plane and placed just below the tissue surface in the
axial dimension. The interested reader can refer to Gan, et al.’s manuscript for more details on
the particle filter and its implementation.

3. Sample preparation and imaging protocol

3.1. Tissue collection

Five human uterine tissue samples, three non-pregnant (NP) and two pregnant (PG), were
collected from consenting patients following hysterectomy according to protocol approved by
the Columbia University Institutional Review board. Samples were divided by cutting blocks of
tissue at the anterior, posterior, and fundus. The blocks were sliced into 15-25 mm x 15-25 mm
square slabs with 2-4 mm thickness, resulting in anywhere from 4 to 8 slices per tissue block.
Tissue was flash frozen using dry ice and stored in a −80 C freezer. Because hysterectomy is
performed in response to disease of myometrial tissue, our specimens represent a rich diversity
of pathologies and parity to provide a heterogeneous dataset for testing our algorithm. Patient
demographic information can be found in Table 1.

Table 1. Patient specific obstetric historya

Patient ID Age Ethnicity G P Hysterectomy indication Obstetric history

NP Patient 1 40 AA 0 0 Fibroids No pregnancies

NP Patient 2 37 Hispanic 1 1 Fibroids Prior C/S

NP Patient 3 41 White 4 2 Endometriosis NSVD

PG Patient 1 39 White 11 2 Accreta Prior C/S

PG Patient 2 30 Hispanic 4 3 Accreta Prior C/S

aNP ≡ Non-pregnant;PG ≡ Pregnant;G ≡ Gravida;P ≡ Parity;AA ≡ African-American;C/S ≡ Cesarean section

3.2. OCT imaging

Prior to imaging, samples were thawed and submerged in PBS to keep the tissue hydrated.
All samples were imaged using a commercial TELESTO SD-OCT system (Thorlabs, GmbH,
Germany) with 6.5 µm axial and 15 µm lateral resolution. Multiple volumetric scans were
needed to image each tissue slice. Each image volume was 5.5 x 5.5 x 2.51 mm (1375 x 1375 x
512 voxels) and overlapped 0.5 mm with adjacent volumes for digital stitching. Tissue slices were
imaged front and back to capture the full sample thickness. The number of sub-volumes acquired
varied by tissue slice depended on size and shape and ranged from 6 to 20 sub-volumes for each
side of a tissue slice. The wide range in the number sub-volumes is a result of the varying tissue
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block’s size. Sub-volumes were stitched using a custom OCT registration and blending method
to create a single mosaic volume [32]. This resulted in 28-41 mosaic volumes per patient.

4. Results

4.1. 3-D fiber simulation

The proposed 3-D fiber orientation method was first demonstrated on a simulated image volume.
Collagen fibers were simulated by generating high intensity tracts within a noisy image volume.
All simulated fibers were oriented at θ = 20◦ and φ = 70◦ and uniformly placed in the image
volume with 10 pixel lateral spacing. Figure 6(a) shows a 3-D view of the simulated fibers. The
fibers within the image volume are visualized by looking at orthogonal image planes which are
shown for the en-face plane (Fig. 6(b)) and the transverse plane (Fig. 6(c)) and were taken at the
locations represented by the red and green planes in Fig. 6(a), respectively. Figures 6(d) and 6(e)
show the fiber orientation maps for θ and φ, respectively. The uniform color of the maps indicate
the uniform distribution of fiber orientations. Some error in measurement was observed largely
due to effects from the discrete nature of the thin, simulated fibers. This resulted in an average
error of 2.58◦ in θ and 0.04◦ in φ.

Fig. 6. 3-D fiber orientation mapping example for simulation image volume. (a) Simulated
fibers generated at θ = 20◦ and φ = 70◦ and evenly distributed throughout an image volume.
(b) En-Face (XY) view of image volume (red plane in (a)). (c) Side view (XZ) of image
volume (green plane in (a)). (d) Map of the depth-averaged θ orientation measured using
the proposed fiber orientation algorithm. Total average orientation measured was 22.58◦
(2.58◦ error). (e) Map of the depth-averaged φ orientation measured using the proposed fiber
orientation algorithm. Total average orientation measured was 69.96◦ degrees (0.04◦ error).

In biological tissue, collagen fibers rarely group in perfectly ordered bundles as they are in
Fig. 6. Using a similar simulation, the 3-D mapping algorithm’s accuracy was assessed for
fibers with different degrees of variation in their orientation. Fibers were simulated at random
orientations with mean angles of µθ = 20◦ and µφ = 70◦, and some standard deviation σθ and
σφ. σθ was varied from 0◦ – 90◦ while σφ (σφ) was varied from 0◦ – 45◦. For each simulated
pair (σθ ,σφ), the absolute value error in orientation was calculated for θ and φ (eθ , eφ) and
averaged over all voxels of the simulated image volume using circular statistics. Figure 7(a),
7(b), 7(c) shows the simulated fibers for three different (σθ ,σφ), pairs. As σθ and σφ increase,
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the orientation of adjacent fibers becomes more varied and the full fiber group becomes more
chaotic. Figures 7(d) and 7(e) show the mean absolute value error for θ and φ, respectively. For
larger values of σθ and σφ the error is higher due to increasing number of overlapping fibers
and variance in orientation within algorithm’s measurement windows. The maximum value of
eφ was 31.05◦ for σθ = 70◦ and σφ = 40◦ while the maximum eθ was 20.27◦ for σθ = 90◦ and
σφ = 40◦.

Fig. 7. Fiber proximity simulation mapping test. A group of uniform randomly oriented
fibers were simulated with mean angles µθ = 20◦ and µφ = 20◦ and standard of deviation
σθ and σφ (a) Simulated fiber bundle with all fibers at the same orientation of θ = 20◦
and φ = 70◦. (b) Simulated fiber bundle with moderate deviation in orientation from the
simulation in (a) (σφ = 20◦, σθ = 30◦). (c) Simulated fiber bundle with heavy deviation in
orientation from the simulation in (a) (σφ = 45◦, σθ = 90◦). (d) Absolute value error in θ,
eθ . (e) Absolute value error in φ, eφ . eθ and eφ both increase with σθ and σφ . eθ is nearly
independent of σφ , while eφ is affected most significantly by σθ .

The en-face orientation θ is calculated by analyzing local image gradients within a window of
pre-defined size. It is known for window-based methods that their accuracy is dependent on the
window size. This relationship was evaluated on simulated fibers by varying the window size
for different degrees of fiber variance, similar to the test in Fig. 7. Again, simulated fibers were
drawn at random orientations with a mean orientation of µθ = 20◦, µφ = 70◦ with three different
standard of deviations (see Fig. 7 Legend). Window size was varied from 11 x 11 to 71 x 71
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pixels in steps of 10 pixels and the average orientation (µθ , µφ) and error (eθ , eφ) were calculated
for each window size. The results are shown in Fig. 8, where the average measured orientations
µθ and µφ are plotted in Fig. 8(a) and Fig. 8(b) and the average errors eθ and eφ are plotted in
Fig. 8(c) and Fig. 8(d). µθ and µφ as a function of window size was found to be dependent on σθ

and σφ . For the three simulation cases, µθ and µφ remained close to the true mean orientations
(µtrue,θ = 20◦, µtrue,φ = 70◦), but the variance as a function of window size was higher for larger
values of σθ and σφ . Similarly, eθ and eφ remained relatively constant for small σθ and σφ , but
increased as a function of window size for larger σθ and σφ . The results show that when all the
fibers of a group are at a similar orientation, large or small window sizes will capture the same
orientation on average with high accuracy. When the deviation in orientation between adjacent
fibers becomes more drastic, larger window sizes contain more fibers at different orientations
which results in higher error measurements, but similar average orientation.

Fig. 8. Length scale simulation test. Average orientation (µθ , µφ) and error (eθ , eφ) were
measured for different window sizes and variance in local fiber orientation (σθ , σφ). The
legend shows the three simulation cases that were tested. For large σθ and σφ , eθ and eφ
increase with window size (yellow), but remain constant with window size for small σθ and
σφ (blue). µθ and µφ remain within +/−5◦ for all three simulation cases and window sizes
greater than 21 x 21 pixels. (a) Average angle µθ . (b) Average error eθ . (c) Average angle
µφ . (d) Average error eφ .
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4.2. Image enhancement

To visualize and identify fibrous features in real OCT images rather than simulated image volumes
we developed a custom fiber enhance pipeline. Each OCT image volume was pre-processed
using this image enhancement pipeline prior to fiber orientation analysis. The visual effect of
the pre-processing is shown in Fig. 9 for an OCT b-scan from an NP (Fig. 9(a)–9(b)) and a PG
uterine specimen (Fig. 9(c)–9(d)). The NP example is from the anterior location while the PG
example is from the fundus. Both examples were taken from a myometrial tissue slice. The raw
b-scan in Fig. 9(a) was intensity adjusted for visualization while Fig. 9(b) shows the same image
when fully processed. While fiber architecture is visible in the raw image, it is difficult to resolve
individual fibers which are obscured by speckle, low contrast, and reflection artifacts (bright
vertical "streaks"). In the processed image these problems have been mitigated, improving the
visibility of collagen fibers. The image enhancement has a similar effect on the PG example
where multiple collagen fiber groups can be visualized which are nearly impossible to discern in
the raw image.

Fig. 9. Example of image enhancement pre-processing pipeline. (a) B-scan from a NP
specimen (anterior, myometrium). (b) Enhanced version of (a). (c) B-scan from a PG
specimen (fundus, myometrium). (d) Enhanced version of (c). Scalebar = 0.5 cm.

4.3. 3-D fiber modeling

3-D fiber analysis was initially applied to a 2.85 mm x 2.85 mm x 2.51 mm sub-volume from
an NP uterus specimen. The sub-volume was taken from a region where fibers had relatively
uniform alignment so that the mapping and tractography results could be visually compared with
ease. 3-D views of the OCT sub-volume and fiber tractograph are shown in Figs. 10(a) and 10(b),
respectively. Figure 10(c) and 10(f) show averaged views of the OCT sub-volume from two
different directions. The resulting depth-averaged θ and φ maps are shown overlayed onto the
XY view in Fig. 10(c) and Fig. 10(f), respectively. Corresponding XY and XZ views of the 3-D
particle filter fiber model are shown in Fig. 10(e) and Fig. 10(h), respectively. Comparing the



Research Article Vol. 11, No. 10 / 1 October 2020 / Biomedical Optics Express 5532

results of both the mapping and particle filter to the OCT, the general direction of the fiber tracts
align with the fibers in the OCT image. Visualization 1 shows the fiber tracts overlayed onto the
OCT sub-volume.

Fig. 10. 3-D fiber model validation using OCT uterus image sub-volume. (a) 3-D view of
the OCT image sub-volume spanning 2.85 x 2.85 x 1.5 mm volume. (b) 3-D view of fiber
tracts in (a) using particle filtering technique. (c) OCT sum-volume projection in the XY
(en-face) plane. (d) Depth-averaged en-face (θ) fiber orientation map. (e) En-Face (XY)
view of the 3-D particle filter model. (f) OCT sum-volume projection in the XZ (transverse)
plane. (g) Depth-averaged incline(φ) fiber orientation map. (h) Side (XZ) view of the 3-D
particle filter model. Fiber tract colors were chosen randomly to enhance visual contrast.
Scale bar = 0.5 mm.

3-D fiber orientation maps were obtained for two OCT mosaic volumes. Figure 11 shows
the 3-D maps produced for a tissue slice from an NP (a,c,e,g) and PG (b,d,f,h) specimen. The
orientation maps are overlayed with transparency onto the OCT sum-volume projection to provide
a visual connection to the imaged tissue features. The colors indicate the local fiber orientation
for θ and φ according to the colormaps shown on the right side of the figure. The 2D maps
(Figs. 11(a), 11(b), 11(e), 11(f)) are depth-averaged, meaning the displayed orientation is the
circular mean of all measured orientations at a given en-face location and over the axial range of
the OCT image volume. Additionally, the 3-D fiber orientation maps are shown in Figs. 11(c),
11(d), 11(g), and 11(h). Their shape matches that of the corresponding tissue slice. The two tissue
specimens displayed in the figure are from approximately the same anatomical location, however,
the fiber organization differs significantly between them. In both the NP and PG examples

https://doi.org/10.6084/m9.figshare.12702158
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(Fig. 11(a)–Fig. 11(d)), the θ fiber map shows how the the collagen fibers tend to group locally,
but also swirl and frequently change direction across the full span of the tissue. Conversely, the
NP φ fiber map in Fig. 11(e) shows a uniform fiber alignment parallel to the tissue surface with a
few areas of moderate incline. The PG φ map in Fig. 11(f) shows that this fiber network has a
slightly higher incline on average than in the NP example. Additionally, there are more areas of
angled or vertically aligned fibers in the PG sample.

Histogram analysis can be applied to the θ and φ fiber maps to obtain more information about
the tissue’s collagen organization. To demonstrate this, we looked at histograms of the 3-D fiber
orientation for an NP and PG uterine specimen with a highly organized collagen networks. Each
histogram was generated using a bin width of 0.5◦ and covering a range of 180◦ (θ ∈ [0◦, 180◦],
φ ∈ [−90◦, 90◦]). The NP sample histograms of the θ and φ orientation for the full mosaic volume
are shown in Fig. 12(a) and 12(b), respectively. The θ histogram has three dominant peaks (40◦,
125◦, and 175◦), suggesting this volume has three main fiber groups, each defined by a dominant
orientation and dispersion. These same groups, however, do not appear in the φ histogram in
Fig. 12(b). Instead, it shows a single distribution centered at 0◦ with the majority of non-zero
bins in the range of +/−40◦. To further investigate the fiber groups, we examined the same
histograms for three different sections of the volume. Figure 12(c) shows the θ map overlayed
onto the OCT sum-volume projection and the three regions that were analyzed. These areas
were roughly chosen to cover three areas with distinctly different appearance in the OCT en-face
images. The resulting θ and φ histograms for each section are shown in Fig. 12(d). Sections 1
and 2 each cover a single dominant fiber group as indicated by the uni-modal appearance of the θ
histogram and Section 3 has a mixture of different fiber groups. While all three sections have
peaks in the φ histogram at 0◦, each group has a different spread of orientations. Comparing
Sections 1 and 2, the mean angle of Section 1 is lower and the variance is larger than Section 2.
This suggests that the two groups may converge in the volume with the fibers from Section 1
weaving between and underneath the fibers in Section 2. The significantly higher variance of
Section 3 compared with the other two sections suggests that multiple fiber groups may converge
at that location, resulting in more a more chaotic fiber organization.
The same analysis was repeated for a posterior tissue slice from a PG uterine sample and

is shown in Fig. 13. The full volume θ histogram in Fig. 13(a) reveals up to four fiber groups
with a more even spread between groups than in the NP example from Fig. 12. This is visually
reflected in the θ map in Fig. 13(c). Again the volume was separated into three sections by visual
identification of the fiber groups and histogram analysis was applied to each section (Fig. 13(d)).
The θ section-based histograms have more exaggerated peaks for the different fiber groups, but
overall, the sectioning does not isolate the different groups as well as in the NP example. Another
interpretation of this result would be that the different fiber groups of this sample are more mixed
and the overall organization is more chaotic than in the NP example. The φ histogram for the
full volume in Fig. 13(b) again has no discernible grouping like in the NP example. When
comparing the φ histograms for Section 1 to Sections 2 and 3 however, we see that the fiber
incline characteristics change from the top half of the tissue slice to the bottom half.
Using the θ and φ fiber maps and the particle filtering technique, fiber tractographs were

generated for the NP uterus sample shown in Fig. 12. Two different views of this tractograph are
shown in Fig. 14. Fiber tracts were generated using a 3-D particle filter (green/blue) and overlayed
over the 3-D OCT mosaic volume (gray). The different fiber tract colors distinguish the two
largest fiber groups identified using the histogram analysis of the θ fiber map. The green fibers
are characterized by θ ∈ [80◦, 155◦] while the blue fibers are characterized by θ ∈ [155◦, 30◦].
Fibers tracts outside this range were omitted for visualization purposes. The two different views
show how the different fiber groups interact. In the center of the volume, small patches of the
green fiber group can be seen weaving between the blue group in a characteristic basket-weaving
pattern. Animations of the fiber tracts alone are provided in Visualization 2 and Visualization 3.

https://doi.org/10.6084/m9.figshare.12702152
https://doi.org/10.6084/m9.figshare.12702149
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Fig. 11. En-Face (θ) and incline (φ) collagen fiber orientation maps from a non-pregnant
(NP) and pregnant (PG) uterine sample. There are two different visualizations of these maps
shown: 2-D depth-averaged orientation maps which are overlayed onto the OCT sum-volume
projection for visualization (a,b,e,f) and full 3-D block visualizations (c,d,g,h). The different
colors indicate the collagen fiber’s en-face orientation (a,c,e,g) or its incline with respect to
the tissue surface (b,d,f,h) according to the displayed colormaps where θ, φ ∈ [0◦, 180◦].
Scalebar = 0.5 cm.
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Fig. 12. Histogram analysis reveals fiber groups in the non-pregnant uterus sample. (a,b)
Histogram of θ and φ orientations for full mosaic OCT image volume of an NP (anterior)
uterus tissue specimen. (c) En-Face sum-volume image of the uterus specimen. Color
overlay shows the depth-averaged θ orientation map. (d) Histogram analysis was divided into
three separate sub-volumes, as indicated by the color outlines in (c). Each section covers a
dominant fiber group with the corresponding histograms revealing the dominant orientation
and dispersion of each group. Scale bar = 0.5 cm.
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Fig. 13. Histogram analysis reveals fiber groups in the pregnant uterus sample. (a,b)
Histogram of θ and φ orientations for full mosaic OCT image volume of an PG uterus tissue
specimen. (c) En-Face sum-volume image of the uterus specimen. Color overlay shows the
depth-averaged θ orientation map. (d) Histogram analysis was divided into three separate
sub-volumes, as indicated by the color outlines in (c). Each section covers a dominant fiber
group with the corresponding histograms revealing the dominant orientation and dispersion
of each group. Scale bar = 0.5 cm.
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Fig. 14. 3-D fiber model using particle filter technique for an NP sample. Color represents
two dominate fiber groups identified via histogram analysis (see Fig. 12). a) View 1. b)
View 2. Scale bar = 4 mm.
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5. Discussion

In this manuscript we demonstrated a complete imaging and processing workflow for analyzing
and modeling 3-D collagen fiber architecture from SD-OCT volumes of human uterine specimens.
Image processing pipelines were developed to enhance OCT image quality, acquire 3-D fiber
orientation maps, and produce tractographic models of the uterine fiber network. The proposed
methodwas demonstrated for simulated image volumes and ex-vivo specimens of pregnant and non-
pregnant uterine tissue from multiple anatomical locations. We found that the proposed methods
provide an efficient and automated workflow for both quantitative analysis and visualization of
3-D collagen networks.
Some similar methods have been previously proposed, most notably the method by Gan,

to quantify myofiber direction in 3-D for SD-OCT image volumes of human heart specimens
[12]. Our method differs from Gan, et al.’s method in a fundamental way. Their algorithm was
specifically proposed for analyzing myocardial tissue where it is known that myofibers are highly
organized and align parallel to the tissue surface with minimal deviation [33]. This assumption
means that analysis can be restricted to en-face images and it was not necessary for them to
measure fiber incline orientation directly from b-scans. While many tissues share this property,
such an assumption is inappropriate for human uterine tissue where we found interweaving and
vertically aligned collagen fibers to be prevalent. This may prove to be especially relevant in
pregnant myometrium.

Other studiesmodeling 3-D fiber architecture inOCT have relied on the polarization information
provided by PS-OCT to create fiber tractography models [21]. The techniques used in PS-OCT
are powerful as they use both OCT structural information and polarization information to trace
fiber tracts. Our goal in this study, however, was to explore methods for analyzing and tracing
3-D fiber networks from only the structural OCT information obtained using a common OCT
system. We believe that by accomplishing this goal, 3-D fiber analysis can become more widely
available to interested researchers who would like to use OCT systems that are less expensive,
easier to use, and require less digital storage then PS-OCT systems.
A number of tests were used to validate the proposed method on simulated data. The tests

investigated the accuracy of the 3-D orientation mapping for environments where fiber orientation
varied greatly between adjacent fibers and for different en-face window sizes. For fibers with
significant changes in orientation we found that the fiber incline φ was typically less accurate
than θ. In the worst case, the error in φ was as large as 35◦. The error in φ becomes large in this
scenario because the patch size used to sample the transverse images is larger than the window
size used for θ. The algorithm assumes a single orientation in depth, but this assumption will not
hold when collagen fibers become chaotic on the length scale of a single image patch, which
results in potential significant errors. In future iterations, modification of the patch processing
method may allow for more granular sampling in the axial direction to account for multiple layers
and overlapping fibers. These changes are essential to future statistical analysis.

The focus of this study was to develop and test a framework for 3-D fiber orientation mapping
using OCT image volumes. While in-depth analysis of the resulting maps and tractographs was
outside the scope of this study, histogram analysis was employed to demonstrate our method’s
potential to reveal new information about uterine collagen macro-structure. Identifying fiber
grouping on the millimeter length scale and analyzing their individual organization had not been
previously reported and we feel this method of analysis will be impactful for understanding normal
structure function as well as pathological uterine physiology as it pertains to patient-specific
collagen organization. Analysis of fiber groups can be further expanded through Gaussian
mixtures models to automate the process and make accurate measurements of mean fiber
orientation and dispersion.

One interesting feature we observed in the histogram analysis (Fig. 12) is that the φ histograms
in Figs. 12(b) and 12(d) have very sharp peaks at the 0◦ bin. It is difficult to say what the source
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of this peak could be, however, it is likely to be a result of imperfections in the calculation of φ.
Because φ is calculated as the arctangent of a ratio (Eq. (1)), an orientation of 0◦ ∈ [−90, 90]
will generally result when the numerator of the ratio is much smaller than its denominator.
Additionally, φ is a function of θ and φx,y, so small errors in these measurements will propagate
through the φ calculation and may concentrate near 0◦. Using a very narrow bin width would
smooth this erroneous peak, but would also make the rest of the histogram impossible to interpret.
We found that a bin size of 0.5◦ was the best compromise between reducing the size of the 0◦
peak and producing a smooth and interpretable histogram.

Uterine tissue is complex because of its sophisticated collagen fiber architecture and heteroge-
neous composition of cells and ECM components.. A limitation of this study is that the fiber
orientation mapping and tractography phases do not include tools to distinguish different tissue
types. Uterine tissue is comprised primarily of collagen and smooth muscle cells (SMCs), though
relative concentrations of each are not well characterized and may change significantly between
specimens. SMCs can be further characterized as either uterine smooth muscle (USM) or vascular
smooth muscle (VSM) which are phenotypically different and vary in their presentation based on
the presence of vessels and arteries [5]. Histological sectioning suggests that in general SMCs are
also aligned structures and well correlated with collagen alignment [28]. This heterogeneity had
a minimal effect on the accuracy of our 3-D fiber processing method because both quantification
tools, the Radon method and the gradient method, inherently detect brighter image features which
correspond with the collagen fibers. Erroneous measurements will only occur in regions with
vary high concentrations of SMCs relative to collagen. In these scenarios, texture analysis or
computer vision tools could easily be incorporated into future versions of this method to create
models that capture all the heterogeneous features of the myometrium including USMs, VSMs,
vasculature, and even pathological tissue.

When considering the uterine tissue complexity and heterogeneity, it is important to address
the diversity of the samples used in this study. All uterine samples obtained and imaged using
OCT were obtained from donors with different parity following hysterectomies. This implies that
these samples are very likely pathological and do not represent the tissue features of a healthy
individual. In preliminary and qualitative analysis of the OCT uterine images, we found that
b-scans revealed a number of basic phenotypes regarding fiber incline. Some samples appeared
highly ordered with fibers primarily at horizontal or vertical inclines while others had more
chaotic organization with fibers oriented at seemingly random orientations. Visualization 4,
Visualization 5, Visualization 6, Visualization 7, and Visualization 8 are videos showing a few
examples of these phenotypes. It is still unclear how representative these images are of typical
uterine tissue and further investigation is needed to more accurately assess the typical structure
of the uterine ECM.
Despite these limitations, the proposed method offers significant advantages over previous

methodologies for modeling the 3-D architecture of human uterine tissue. Lutton, et al. used
histological processing to model a single NP human uterus 7 cm x 3 cm x 0.35 cm tissue block
and create the highest resolution model produced over a multi-centimeter length scale [28]. OCT
provides micron resolution images similar to histology and requires significantly less resources
to image the same volume of tissue. Lutton required thousands of histology slides and an
intensive registration method to create their model. Using OCT, we are able to image and fully
model a tissue slice in a few hours. In combination with processing methods like our proposed
fiber modeling approach, OCT holds promise for even more sophisticated structure function
analysis. We envision that the minimal resources needed to employ our method will open the
door to multi-cohort studies that would have been prohibitively expensive to accomplish using
histological processing or similar methods. The interested reader will be able to download the
3-D fiber mapping code from Columbia University’s Academic Commons.

https://doi.org/10.6084/m9.figshare.12702164
https://doi.org/10.6084/m9.figshare.12702155
https://doi.org/10.6084/m9.figshare.12702161
https://doi.org/10.6084/m9.figshare.12702167
https://doi.org/10.6084/m9.figshare.12702170
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6. Conclusion

An image processing method was developed for extracting and visualizing 3-D fiber orientation
information from OCT images. The resulting fiber model is a global view of whole tissue fiber
networks in human uterine samples which provides a patient-specific platform for examining
collagen micro-structure on a macro-scale and comparing the modeled architecture between
pregnant and non-pregnant specimens. The proposed method has the potential to provide the first
micron resolution model of a full human uterus sample and valuable insight on the physiological
mechanisms related to structural remodeling during pregnancy.
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